VAT OO LY L)

SECHRITY CLASSIFICATION OF THIS PAGE

4 74

REPORT DOC

UMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION
Unclassified

b RESTRICTIVE MARKINGS

23. SECURITY CLASSIFICATION AUTHORITY

3 DISTRIBUTION 7 AVAILABILITY OF REPORT
Approved for public release; distribution

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
Institute for Brain and
Neural Systems

(If applicable)

6b. OFFICE SYMBOL

7a. NAME OF MONITORING ORGANIZATION
Personnel and Training Research Programs

Office of Naval Research (Code 1142PT)

6. ADDRESS {(City, State, and ZIF Code)

Brown University
Providence, Rhode Island 02912

7b. ADDRESS (City, State, and ZIP Code)
800 North Quincy Street
Arlington, VA 22217-5000

83. NAME OF FUNDING / SPONSORING
ORGANIZATION )

~

(If applicable)

8b. OFFICE SYMBOL

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
N00014-91-J-1316

8¢. ADORESS (City, State, and ZIP Code)

Brown University
Providence, RI 02912

10. SOURCE OF FUNDING NUMBERS

PROGRAM - PROJECT
ELEMENT NO. NO.

TASK
NO.

WORK unT
ACCESSION NO

V1. TITLE (Include Security Classification)

Classification of Underwater Mammals usin
Analysis and BCM Theory

g Feature Extraction Based on Time-Frequency

12. PERSONAL AUTHOR(S)
Quyen Q. Huynh, Leon N Cooper, Nathan Int

rator and Harel Shouval

13a. TYPE OF REPORT 13b. TIME COVERED
Technical Report

14. DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT
13

FROM 1O May, 1996
16. SUPPLEMENTARY NOTATION
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP
05 08

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Underwater mammal sounds classification is demonstrated using a novel application of
wavelet time/frequency decomposition and feature extraction using the BCM neuron. The
system achieves outstanding classification performance even when tested with mammal
sounds recorded at very different locations (from training).

9961105 04

20. DISTRIBUTION 7 AVARLABILITY OF ABSTRACT

kJuncLassiFieounumiteo O3 SAME AS RPT. Ooric use

21. ABSTRACT SECURITY CLASSIFICATION

RS Unclassified

22a. NAME OF RESPONSIBLE INDIVIOUAL
Dr. Joel Davis

22b. TELEPHONE (Include Area Code)

(703) 696 4744 22¢. OFFICE SYMBOL

OO FORM 1473, 8a mar

All other editions ar

83 APR edition may be used untit exhaysted.

SECURITY CLASSIFICATION OF THIS PAGE

e obsolete.

DTIC QUALITY INSPRUTED 3




UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGK

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE




Classification of Underwater Mammals using Feature Extraction
Based on Time-Frequency Analysis and BCM Theory

Quyen Q. Huynh* Leon N Cooper  Nathan Intrator! Harel Shouval
Physics Department and
Institute for Brain and Neural Systems
Brown University

May, 1996

Abstract

Underwater mammal sounds classification is demonstrated using a novel application of
wavelet time/frequency decomposition and feature extraction using the BCM neuron. The
system achieves outstanding classification performance even when tested with mammal sounds
recorded at very different locations (from training).

1 Introduction

Detection, classification and localization (DCL) are among the most important and challenging
goals of underwater signal analysis. A cocktail of sounds which includes biological sounds (dolphins,
sperm whales, shrimp etc.) is mixed with environmental sounds (estuaries, crackings of ice, rain)
and man made sounds (torpedoes, submarines, surface ships) dramatically reduces recognition
performance.

It is well known that the features presented to a classifier play a crucial role on its perfor-
mance. Indeed, the feature set selected may be more important than the classifier architecture
itself. Recently, with the tremendous advances in time-frequency analysis (wavelet packet, local
trigonometric basis, Gabor expansions), different feature extraction methodologies [5, 18, 12] have
been proposed, based on the localization properties of the time-frequency basis functions. It has
been shown that using a wavelet representation of the acoustic signals, one can achieve improved
classification [12]. This has led to the increased interest in methods for feature extraction from this
data representation.

Wavelet representation is merely a different full representation of the same signal. While it
suggests natural ways to reduce representation dimensionality by keeping only the highest energy
coefficients (similar to keeping only the first few Principal Components or Fourier coefficients of
the signal), there is no rigorous result showing that these will be a useful representation for the
purpose of signal classification and detection. The need for dimensionality reduction is clear; It
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follows from the curse of dimensionality [2] namely, the fact that the number of data points needed
for a robust parameter estimation of the data density grows exponentially with the dimensionality.
The problem of feature extraction is fundamental in information science. One looks for an efficient
and compact representation of data which leads to new insight into the problem to be solved.
Under some conditions, features extracted with an unsupervised learning procedure may be more
robust and general than those extracted by a supervised learning procedure. This is because the
unsupervised algorithm must focus on the underlying structure of the data and not on pre-assigned
labels which may not reveal the full structure of the data (especially under small training set).
The BCM theory was developed to understand and model the plasticity of the mammalian visual
cortex. This model has recently been extended to a lateral inhibition network [14] and a statistically
motivation variant of it has been used in various high dimensional feature extraction tasks [15, 17].
In this paper, we use a network of BCM neurons for optimal feature extraction from a wavelet
representation, leading to improved classification of underwater acoustic signals. We emphasize here
that the BCM network is not playing the role of a classifier; rather, its role is feature extraction.

1.1 Feature Extraction from Wavelet Representations

Previous approaches to feature extraction from wavelet representation were based on signal en-
ergy [5, 18, 12]. While this is not necessarily the best statistic of the signal for the purpose of
classification, it was a must in the methods that have been used for feature extraction; In [5] and
[18], the training set was analyzed using the time-frequency energy map of the wavelet packet de-
composition tree. Coifman and Saito [5] used statistical considerations to determine the optimal
wavelet packet basis for classification, which they termed the “local discriminating basis” (LDB).
Unknown signals were then projected onto this LDB and classification of the unknown signals was
based on the time-frequency coefficients of only those basis functions in the LDB with the largest
“discriminating power.” Willsky et al. [18] determined relevant features from a time-averaged
energy map, not necessarily corresponding to a single wavelet packet basis. For each signal class
in the training set, an energy matrix was constructed and the singular vectors of this matrix were
used to identify the dominant energy pattern of each class. The features were then selected from
the energy bins of the wavelet packet basis which corresponded to the peak values of the “primary
singular” vectors. Huynh et al. [12] approached the binary classification problem by searching the
wavelet packet library for another “discriminating basis” (LDB-2), using the “best basis” paradigm
of Coifman and Wickerhauser [6] to find the basis that best approximated the difference of the two
classes of signals. LDB-2 was thus the basis which maximized the separation of the two classes.
Unknown signals were then projected onto the LDB-2 and classified by feeding a fixed number
of the largest time-frequency coefficients of the LDB-2 (along with their corresponding time and

frequency indices) into a standard classifier such as the back propagation artificial neural network
(ANN) [19].




2 Projection Index for Classification: The Unsupervised BCM
Neuron

Exploratory projection pursuit theory [11, 10] tells us that search for structure in input space can be
approached by a search for deviation from normal distribution of the projected space!. Furthermore,
when input space is clustered, a search for deviation from normality can take the form of search
for multi-modality, since when clustered data is projected in a direction that separates at least two
clusters, it generates multi-modal projected distributions.

Tt has been recently shown that a variant of the Bienenstock, Cooper and Munro neuron (BCM)
[1] performs exploratory projection pursuit using a projection index that measures multi-modality
[14]). This neuron allows modeling and theoretical analysis of various visual deprivation experiments
[14] and is in agreement with the vast experimental results on visual cortical plasticity [4]. A network
implementation which can find several projections in parallel while retaining its computational
efficiency, was found to be applicable for extracting features from very high dimensional vector
spaces [16, 13].

In the single neuron case, the neuronal activity (in the linear region) is given by ¢ = m - d.
where d is the input vector and m is the synaptic weight vector (including a bias). The essential
properties of the BCM neuron are determined by a modification threshold ©,, (which is a nonlinear
function of the history of activity of the neuron) and a ¢ function that determines the sign and
amount of modification ©,,. The synaptic modification equations are given by

I — 1 8, Om)d
where in a simple form ©,, = E[(m - d)?] and ¢(c,0n) = ¢(c — On).

In the lateral inhibition network of nonlinear neurons the activity of neuron k is given by
¢k = my - d, where my is the synaptic weight vector of neuron k. The inhibited activity and
threshold of the k’th neuron is given by

& = a(ck—nz cj),
i#k

on = E],

for a monotone saturating function o.
The projection index for a single neuron is given by

R(ws) = ~{z Elel) - ).

The total index is the sum over all neurons in the network. The resulting stochastic modification
equations for a synaptic vector my (the negative gradient of the index) in the network are given

by: - u
i, = p[d(Ex, OF) o' (&) — 1) 8(Ej, 04,)0(8;)]d-
itk

In a neural net architecture this is the space generated by the hidden unit activity of the feed forward network.




This network is a first order approximation to a lateral inhibition network (using a single step
relaxation). Its properties and connection to a lateral inhibition network as well as some related
statistical and computational issues are discussed in [14].

Under reasonable assumptions, the BCM algorithm (with £ BCM neurons) produces k weight
vectors which converge iteratively to fixed points corresponding to states of “maximum selectivity.”
In other words, for a single BCM neuron, the converged weight vector becomes orthogonal to all
cluster centers except one. The feature set of the BCM algorithm is formed by the convolutions
of the k weight vectors with the unknown data.

Lateral inhibition in the network allows the construction of an array of feature-selective cells in
which the same feature is not selected more than once and all features of the data set are represented
in an orderly fashion.

3 Feature Extraction Based on Time-Frequency Analysis and BCM
Theory

Our previous works [12] on using wavelet transforms for feature extraction have shown good results
in the classification of marine mammals (dolphins, sperm whales and porpoises). ~ Modern time-
frequency techniques (wavelet packet, local trigonometric basis, Gabor expansions) are considered
as tools for providing an efficient data representation to transform the original data set to a pre-
liminary feature set. However, the curse of dimensionality [2] suggests that classification may be
improved if a dimensionality reduction takes place before the classification stage. In this case, ap-
plying the BCM algorithm to the preliminary feature set (time-frequency-transformed data) reveals
the important clues of the underlying structure of the data. The use of wavelet representation is
supported by the fact that classification results obtained by feature extraction from the raw signal
are worse than those obtained from the wavelet representation (Table 2).

We approach the problem of building a global and robust classifier that combines the virtues
of modern adaptive time-frequency techniques and BCM optimal selectivity as follows:

1. Choose an efficient coordinate system (library of orthogonal and nonorthogonal bases) to
transform the original data set to a preliminary feature space.

2. Construct a network of connected ¥ BCM neurons with lateral inhibition.
3. Train the ¥ BCM neurons on the transformed data to produce k stable weight vectors.

4. Extract k crucial features which are the convolution outputs of the k weight vectors with the
transformed unknown data.

5. Present the k features as inputs to a classifier e.g. the back propagation classifier {19].

3.1 Signal description

The types of signals explored in this study are the marine mammal sounds namely porpoise and
sperm whale which were recorded at a sampling rate of 25 kHz at various locations such as the Gulf
of Maine, the Mediterranean and the Caribbean sea. We consider large original data files where
sounds consist intermittently of mammal sounds and background noise. Note that each of these




Time-Frequency wavelet representation

Frequency

Time

Figure 1: Dyadic time-frequency tiling of the phase plane. The frequency axis is partitioned
in an octave-band fashion. Low frequency band with low temporal resolution is at the
bottom, while higher frequency bands with high temporal resolution are towards the top of
the figure. The entire phase plane is covered by disjoint rectangles of equal area. On the
time-frequency plane, the highest frequency bin was 6.25 - 12.5 kHz and there were 16384
wavelet coefficients spanning over the bandwidth of the signals in the time domain. The
next frequency bin was 3.125 - 6.25 kHz and there were 8192 wavelet coefficients. The third
frequency bin 1.562 - 3.125 kHz contained 4096 wavelet coefficients. Towards the lower
frequency bands, each successive frequency bandwidth is reduced by half.

large original files contain whale or porpoise sounds not both. Several data sets of length 32768
samples corresponding approximately to 1.3 seconds, were extracted from these large files. These
data sets which contained mammal sounds mixed with background noise, were used for training
and testing.

3.2 Projections on Wavelet Space

As a first step in our approach, we choose to project each of the sound vectors on an orthonormal
wavelet basis. Since the sound files are sequences of discrete numbers, we adopt the compactly
supported wavelets Daubechies 4 [7], which are based on discrete-time filter banks. Let f = { F7y yavs
be the discrete version of the input signal f(t) of length K = 2". In the fast discrete wavelet
transform, the signal f is first decomposed into low and high frequency bands by the convolutlon-
decimation (subsampling by two) operations of f with the pair of a low-pass filter G = {gk}k—o
and a high-pass filter H = {hk} —1. The filters G and H satisfy the orthogonality conditions:

GH*=HG*=0, and G*G+ H'H =1.




Methodologies for feature extraction from wavelet representations

~~ 32768 — »

Raw Signal

U

Wavelet Coefficients

- 32768 —

Raw Signal
512 coefficients
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\L J/ elected window

Wavelet Coefficients

512 coefficients
From a randomly
l J/ elected window
Feature Extraction \ll/

Feature Extraction

Figure 2: Application of BCM and PCA feature extraction to the wavelet representation;
On the left, the raw signal with 32768 components was run through the Daubechies 4
discrete wavelet transform. From right to left are the different levels of hierarchy (16385-
32768, 8193-16384, 4907-8192, etc.) correspond respectively to frequency bandwidths 6.25-
12.5 KHz, 3.12-6.25 KHz, 1.56-3.12 Khz.  The feature extraction method is trained on
randomly selected 512 consecutive samples from this wavelet representation. Thus features
could develp for any time/frequency combination. On the right, a segment of 512 samples
from raw signal was first randomly selected, then converted to 512 wavelet coefficient and
used for feature extraction.

G and H are called Quadrature Mirror Filters (QMFs). The QMFs allow perfect reconstruction.
The decomposition process continues iteratively on the resulting low frequency bands and each time
the high frequency bands are left intact. The iteration stops with one low frequency coefficient and
one high frequency coefficient. As a result, the frequency axis is partitioned smoothly and dyadically
finer and finer toward the low frequency region. On the time-frequency (phase), the signal is
decomposed in an octave-band fashion (Figure 1). The entire phase plane is covered by disjoint
cells of equal area which we call the Heisenberg cells. The uncertainty principle can be interpreted
as a rectangular cell located around (¢, f) that represents an uncertainty region associated with
(t, f). The total number of cells is equal to the dimension of the input vector. Each cell is shaded
in proportion to the amplitude of the corresponding wavelet coefficient. It is clear that this type
of gray scale quantization procedure of cells conforms with the uncertainty principle.




3.3 Construction of Training Examples

We applied the wavelet transform to several porpoise and whale signals, each of which has a length
of 32768 samples and a sampling rate of 25 kHz. Two different approaches to construct the training
data were used. The more conventional one is described in Figure 2 (right); Here, we randomly
choose small chunks of acoustic signal (512 consecutive samples) and apply wavelet analysis to
get a new representation of this 512 dimensional data. Then we extract 10 features from the
wavelet representation. The less conventional method is described in Figure 2 (left); Here, we first
- transform the full 32768 samples of the raw signal into a wavelet representation (details of the
representation are in Figure 1). The two dimensional representation is then converted into a single
32768 dimensional vector. From this vector we randomly choose a chunk of 512 samples starting
at a random location and use this 512-dimensional vector for feature extraction.




Whale Porpoise

x10* x 10*

Figure 3: Various representations for the acoustic signal based on different preprocessing methods;
At the top is the raw singal: 32768 consecutive samples representing approximately 1.3 sec of signal
sampled at a rate of 25 kHz (horizontal axis represents time). Below, appears the Fourier repre-
sentation of the signal (horizontal axis represents frequency). Note that while the raw signal does
show some differences between a Porpoise signal and a Whale signal, the Fourier representations
are very similar, indicating the difficulty of the classification problem. The panel below shows a
wavelet representation of the signal (horizontal axis represents time and frequency). This one di-
mensional signal is a concatanation of time an frequency infomation (see Figure 3) so that the low
frequency coefficients with low temporal resolution appear at the left, followed by high frequency
with higher temporal resolution. It can be seen that the high frequency part carries less infomation
compared with the lower frequency part. This fact is emphasized in the next two panels where the
convolution of two BCM neurons with the wavelet signals are depicted (horizontal axis is the same
as in the wavelet representation). It is clear that BCM found discriminating information in the low
frequency range, at a frequency band of 1.562 — 3.125 kHz. One can then view the BCM neuron
as a matched (nonlinear) filter designed to increase discrimination between the signals.

The next step of our approach was to train the ¥ BCM neurons on the wavelet transformed data




to produce k stable weight vectors. We used here 10 BCM neurons which were connected and form
a network with lateral inhibition. Each neuron was represented by one weight vector of dimension
512. The neurons were trained simultaneously on wavelet transformed signals of porpoises and
whales. It took several hundred thousand iterations to converge to 10 fixed points.

Figure 3 presents various processings of the acoustic signals. There are 32768 consecutive mea-
surements of the raw data (top panel) a Fourier representation (which looks very similar for both
signals) a wavelet representation of the same signal and a convolution with two BCM neurons (bot-
tom two panels). It can be seen that the convolution between the BCM and wavelet representation
of the whale signals, indicates that the BCM neurons (all 10 of the network) respond only within
the frequency bandwidth of 1.562 - 3.125 kHz at different time locations. There is no responses in
the porpoise cases.

4 Classification results

We have used 300 examples of whale signals and 300 examples of porpoises for the training of
the classifier. Each example was in a vector form with 10 components representing 10 features
extracted by the feature extraction network. The features were computed using the two methods
outlined in Section 3.3

A feed-forward neural network with 10 input nodes was used as a classifier. The architecture
of the network consisted of one hidden layer with 8 nodes and one output node. The network was
trained to high ninety percent correct classification.

When using the large wavelet representation for feature extraction, we have noticed that clas-
sification performance could be improved if we do not train the classifier from signals that were
taken from the same frequency band (for both species). While this may sound odd, it is actually
very reasonable and demonstrates a unique property of the BCM feature extraction (see Section 5);
The selective response of BCM neurons to a specific frequency band was mainly seen for the Whale
signals, due to the feature vectors becoming orthogonal to the class of Porpoise sounds. The or-
thogonality to the other class of signals caused difficulties for the classifier to converge, as there was
no error signal. We have therefore used the frequency bin 1.562 - 3.125 kHz, which contains 4096
wavelet coefficients for the Porpoise signal. During testing of the classifier, only the same frequency
band was used for both species (since one does not know apriori to what animal the signal belongs
to). Thus the “Different freq. bins” referred to in Table 1 corresponds to the training methodology
only.

The results presented in Tables 1 and 2, are for test data that was recorded from different oceans
thus, representing a different acoustic environment and possibly different specie types. These results
are therefore not comparable to results shown in [18] where training and testing was done from the
same geographical location and possibly same animal. We have performed such analyses as well
and got results in the range of 95%-100% correct classification.

4.1 TImportance of BCM feature extraction

In this case we have studied feature extraction from the compactly supported wavelet Daubechies
4 representation. We have compared the BCM feature extraction to PCA feature extraction from
this representation and tested whether the squared coefficients were more informative than the
coefficients themselves, as is often assumed. It turned out that the squared coefficients which




Classification results: Wavelet analysis on 32768 dimensions

Porpoise Sperm

whale
PCA from squared wavelet 76.7 32
BCM from same freq. bins (orig. wavelet) 92 74
BCM from different freq. bins (orig. wavelet) 96 88
BCM from same freq. bins (squared wavelet) 100 81
BCM from different freq. bins (squared wavelet) | 100 91

Table 1: Percent correct classification using PCA and BCM feature extraction from
Daubechies 4 basis representation. Results are presented based on features extraction di-
rectly from the coefficients or from the square of the coefficients (the energy). Results
are also presented for training the classifier based on features extracted by BCM from the
whole wavelet representation, namely from all frequency bands, or based on features ex-
tracted only from locations BCM was selective to (see text for details). 10 features were
extracted in each of these methods,

correspond to the energy in a particular time/frequency location are more informative as is seen
in Table 1. Most importantly, the BCM feature extraction outperforms PCA feature extraction
from this representation. PCA (Principal Components Analysis) is much used in signal processing
as it is very simple to apply and extracts second order statistics from the data which is sufficient
for many applications [8]. As is seen in Table 1, the performance of PCA here is worse, suggesting
that there is higher order statistics involved in the structure exploration.

4.2 Importance of the wavelet representation

The Fourier representation of the data was not useful for discrimination as it was very similar for
both species (Figure 3, second panel from top). The usefulness of wavelet representation for classi-
fication of underwater sounds has been extensively studied and briefly reviewed in Section 1.1. We
have thus not attempted to compare classification performance based on a wavelet to performance
based on other representations. However, since we have been using a novel feature extraction
method for these signals, we evaluated the performance of the BCM feature extraction based on
the wavelet representation and compared it to performance on feature extraction via BCM from
the raw signal.

Table 2 presents classification results from the more conventional way of extracting features
from this data, a method that allows comparison with the Local Discriminant Basis search [3].
The preprocessing used is described in Figure 2 (Right). The first raw represents results of feature
extraction taken directly from the raw signal, namely choosing randomly 512 consecutive measure-
ments from the raw signal and using them as input to the BCM feature extraction. The high
sensitivity to the Whale signal is in contrast to the high sensitivity of the other methods to the
Porpoise signal. This suggests a possible combination between these two signal representations in
the future. We have also compared two different wavelet representations: the compactly supported
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Classification results: Wavelet analysis on 512 dimensions

Porpoise  Sperm

Whale
BCM applied on raw signals 32 95
LDB on wavelet packet 98 51
Highest energ. from Daub. 4 [ 72 47
BCM extraction from Daub. 4 | 99 76

Table 2: Percent correct classification based on various signal representations (see text for
details). BCM applied to the raw data is performed by extracting 10 features while training
on randomly chosen sequential chunks of 512 samples from the 32768 sample raw data. LDB
on wavelet packet extracts 10 best discriminant basis functions based on Coifman’s algo-
rithm [5]. Highest energy corresponds to extracting 5 highest energy coefficients with their
location (10 features total) from Daubechies 4 basis. The last row represents classification
performance on 10 BCM features extracted from Daubechies 4 basis representation.

wavelet Daubechies? 4 [7] and the wavelet packet representation with the “local discriminating ba-
sis” (LDB) feature extraction of Coifman and Saito [5]. LDB gets the closest results to classification
from BCM features.

5 Conclusions

We have shown that feature extraction from a wavelet representation has a profound effect on
the classification results. While wavelet representations are certainly more appropriate for these
acoustic signals, the detailed resulting representation is not directly appropriate for classification,
as it is too big. We have shown the useful properties of an efficient non-linear feature extraction
method for classification from wavelet representations.

The BCM feature extraction which performs non-linear unsupervised dimensionality reduction,
was found to be more practical than unsupervised principal components on one hand and supervised
discriminant pursuit on the other. Rather than looking for the projections that minimize the ratio
of the within-class distance vs. the between-class distance (as is done in discriminant analysis) [9],
BCM looks for a direction that is mostly orthogonal to one group of signals (without knowing if
they belong to the same class or not) while retaining selectivity to the other set of signals.

We have also demonstrated the ability of this method to extract features from the huge full-
signal wavelet representation. This is a unique feature which can not be performed by linear
discrimination [3]. Classification based on this feature extraction achieved outstanding results on
test data that was recorded at the same environment as well as data that was remotely recorded.

2The third raw represents classification from the 10 highest energy coefficients of the wavelet representation.
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